

AQA Biology A-Level Required Practical 1

Investigation into the effect of a named variable on the rate of an enzyme-controlled reaction.

Network www.pmt.education

▶ Image: Second Second

The rate of reaction of an enzyme-controlled reaction is influenced by different factors: **the temperature**, **pH**, **concentration of the substrate**, and the concentration of the enzyme. The effect of each of these can be determined by **changing a single variable** and measuring its effect on the rate of reaction. It is important to **keep all other variables constant** so that they do not influence the results.

Equipment list

- Powdered milk suspension
- Trypsin solution (0.5%)
- Distilled water
- Hydrochloric acid (0.1M)
- 5cm³ syringes
- Flat bottomed tubes
- Water bath
- Timer

Method

In this method the named variable is temperature

- 1. Make two control samples:
 - Take two flat bottomed tubes.
 - Add 5cm³ of milk suspension to each tube.
 - Add 5cm³ of distilled water to one tube- this control will indicate the absence of enzyme activity.
 - Add 5cm³ of hydrochloric acid to the other- this control indicates the colour of a completely hydrolysed sample.
- Take three test tubes and measure 5cm³ milk into each. Place in water bath at 10°C for 5 minutes to equilibrate.
- 3. Add 5cm³ trypsin to each test tube simultaneously and start the timer immediately.
- 4. Record how long it takes for the **milk** samples to **completely hydrolyse** and become **colourless**.
- 5. Repeat steps 2-3 at temperatures of 20°C, 30°C, 40°C and 50°C.
- 6. Find the **mean** time for the milk to be hydrolysed at **each temperature** and use this to work out the **rate of reaction**.

Rate of reaction = $\frac{1}{mean time}$

Risk Assessment

Hazard	Risk	Safety Precaution	In emergency	Risk Level
Broken glass	Cuts from sharp object	Take care when handling glass objects; keep away from edge of desk	Elevate cuts; apply pressure; do not remove glass from wound; seek medical assistance	Low
Hydrochloric acid	May cause harm/irritation to eyes or in cuts	Wear eye protection; avoid contact with skin, tie up long hair	Wash off skin immediately; flood eye/cuts with cold water	Low
Hot liquids	Scalding	Handle with care; use tongs to remove boiling tubes from water bath; wear eye protection, keep away from the edge of the desk	Run burn under cold water; seek medical assistance	Low
Enzymes	Allergies	Avoid contact with skin/eyes; wear eye protection	Seek assistance	Low

Graph

• Plot a graph of rate of reaction against temperature.

Conclusion

• Milk contains a protein called **casein** which, when **broken down**, causes the milk to turn **colourless**. **Trypsin** is a **protease enzyme** which **hydrolyses the casein protein**.

O

www.pmt.education 🖸 🖸 🕑 PMTEducation

- As the temperature increases from 10°C, kinetic energy increases so more enzyme-substrate complexes form. This means that the rate of reaction increases up to the optimum temperature.
- At temperatures beyond the optimum, bonds in the enzyme tertiary structure break, which changes the shape of the active site. This means that the substrate and enzyme are no longer complementary..